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ABSTRACT 

The software industry strives to enhance software quality by predicting bugs, removing bugs, 

and predicting fault-prone modules. Researchers have been drawn to this field because of its 

importance in the software industry. For software defect prediction, various strategies have 

been presented. Data mining using machine learning has been advocated as an important 

paradigm for software bug prediction in recent studies. The current level of software defect 

prediction has a number of flaws, including classification accuracy. Software defect databases, 

on the other hand, are unbalanced and known to be prone to errors due to their large size. This 

research offered a combined approach for software defect prediction and software bug 

prediction to address this issue. The suggested method combines Neural Networks with the 

FireFly Optimization technique. The FFO method optimises the weights of the Back 

Propagation Neural Network. The ideal minimises the BPNN classification error. The proposed 

FF-NN classification method is compared to existing classifiers such as Support Vector 

Machine (SVM), K-Nearest Neighbor (KNN), and Nave Bayes (NB) using a variety of 

evaluation metrics such as Accuracy, Sensitivity, Specificity, Precision, and error rates such as 

Miss Rate, False Positive Rate, and False Discovery Rate. 

 

KEYWORDS: Software Defect, Classification, Prediction, Neural Network, Fire Fly 

Optimization. 

 

1. INTRODUCTION 

The need for software for diverse purposes has risen dramatically during the last two decades 

[1] [2]. To suit client demand, a large number of software applications for corporate or daily 

use are developed. Software quality is an unsolved issue as a result of mass production, 

resulting in inadequate performance for industrial and individual applications. To address this 

issue, software testing was developed, which aids in the discovery of faults or bugs in software 
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applications and attempts to repair them [3] [4]. A great number of software applications are 

generated each year due to increased demand from current technology-based industries and 

business applications, yet software quality remains an ignored concern during this 

development. Software applications have become an indispensable component of daily life and 

business in recent years. A tiny software error in a corporate setting might result in a loss to 

the industry and impair customer satisfaction [5] [6]. Software testing-related concerns have 

become a major source of worry. As a result, an automated software testing procedure is 

necessary, which can increase performance and reduce installation costs. This problem can be 

avoided if the tester understands the reasons of potential faults and the overall software 

development process. This can help with not only lowering overall software development costs, 

but also better planning and execution of software development projects [7][8]. 

 A defect or bug is defined by IEEE standards as a "inappropriate step, procedure, or 

data definition in a computer programme" [9]. In this article, the terms "software defects" and 

"bugs" are used interchangeably to refer to errors in software source code [10]. Users may 

experience undesirable system behaviour at any time as a result of system failure caused by 

defects or faults. 

 The software development life cycle is regarded as a fundamental contributor to 

software development in the software industry. Early defect prediction is becoming 

increasingly popular, and project managers are considering it a crucial demanding 

responsibility [11]. Complex issue domains, rising software application requirements, software 

performance uncertainty, and a complex development process are all recent developments in 

the software development sector. Despite comprehensive documentation and a well-organized 

procedure, some faults are unavoidable in the software development process, resulting in 

software performance decrease. 

 Various strategies for software defect minimization have been introduced in today's 

industry development. However, for proper software application analysis, these methodologies 

necessitate additional time, money, and resources. These efforts, on the other hand, can aid in 

the analysis of fault sources and the improvement of software performance. Software reliability 

is another term for software performance. According to software reliability, software 

applications are tested in an unpredictable environment and assessed to see if they are capable 

of operating in the environment for a specific period of time [12]. This method is based on 

software reliability probability estimation [13]. Software metrics are employed to complete this 

task, and it is discovered that a higher number of failure predictions necessitates more quality 

improvement resources, making it a difficult process. Several software defect prediction 

models based on software metrics have been proposed in recent decades. These models can aid 

in the early detection of problems and the development of trustworthy software. 

Most defect prediction models created to date have used software metrics such as classical 

software metrics, object-oriented software metrics, and process metrics [14] [15]. 

Organizations utilise Pareto analysis for software quality measurement in real-time scenarios, 

where software metrics are combined with the greatest metric value for a specific software 

application. Although this technique improves performance, it is still unable to capture many 

errors, resulting in software testing performance decrease. According to the study, human 

review is ineffective at detecting faults in software modules. In a different scenario for software 
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defect prediction, software measurements are used to create a statistical model for forecasting 

software problems. The regression or function-approximation problem analysis [16] is used to 

create these models. However, these methods do not produce effective results. This is due to 

the fact that each software's design is unique, with various function combinations, development 

teams, and third-party components. As a result, the software defect prediction produces an 

incorrect result. Furthermore, because of the variety of terms, no "critical value" for any of the 

software metrics can be determined, and parametric models such as linear models, Poisson 

regression, and quadratic models, among others, cannot be accepted for defect prediction and 

software analysis. 

 To address the complexity issue, non-parametric techniques are presented for software-

defect prediction. These techniques include Data Mining technique and computational 

intelligence for predicting the software defects. 

 

3. ARTIFICIAL NEURAL NETWORK CLASSIFICATION 

Artificial Neural Network (ANN) [17] [18] [19] [20] [21] [22] is a mathematical model that 

simulates neuron action in the human brain computationally by duplicating the brain's pattern 

and producing outputs depending on the learning of a set of training data. One of the most 

common neural network topologies is a multi-layer feedforward network with a back-

propagation learning mechanism. It has been extensively researched and applied in a variety of 

fields. A neural network is typically made up of three layers: an input layer, an output layer, 

and an intermediate or hidden layer. The input vector is ∈ Rn and D = (X1, X2, . . , Xn)
T; the 

output of q neurons in the hidden layer are Z =  (Z1, Z2, . . , Zn)
T; and the outputs of the output 

layer are Y ∈ Rn, Y =  (Y1, Y2, . . , Yn)
T . Assuming that the weight and the threshold between 

the input layer and the hidden layer are wij and yj, respectively, that the weight and the 

threshold between the hidden layer and output layer are wjk and yk respectively, the outputs of 

each neuron in a hidden layer and output layer are: 

Zj = f (∑wijXi − θj

n

i=1

) 

Yj = f (∑wkjZj − θk

q

j=1

) 

 where f() is a transfer function, which is the rule for transferring the neurons' summed 

input to their output, and is a way of adding non-linearity into the network design through a 

proper choice. The sigmoid function, which is monotonic growing and ranges from 0 to 1, is 

one of the most often utilised functions. A standard feed forward neural network with three (3) 

inputs, one (1) hidden layer with seven (7) neurons, and one (1) output layer was utilised to 

validate the performance of the proposed model. 

 

4. FIREFLY OPTIMIZATION ALGORITHM 

The firefly algorithm is a simulation of a firefly's natural activity in searching for mates and 

determining the best position based on its luminous qualities [23]. The programme assumes 

that firefly will be dispersed throughout space at random. Their brightness and appeal have a 
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big influence on each other's attraction. The brightness of its own is determined by its position, 

and the direction of movement is determined by the brightness of its own. High brightness 

fireflies are constantly attracted to low luminance fireflies. Firefly will move randomly if the 

brightness is the same. Because the better the position, the higher the brightness. The firefly 

executes position iteration in the movement iteratively until it finds the ideal place, or the best 

solution to the function. The following formula explains the mathematical explanation of the 

optimization of the firefly algorithm: 

 The relative luminance formula of the firefly is: 

Iij(rij) = Iie
−γrij

2

 

 Where Iij represents the relative brightness between the firefly j and the firefly i; Ii 

represents the absolute brightness of the firefly i at r=0; r is light absorption coefficient, the 

algorithm believes that the light is weakened during the propagation process, resulting in a 

decrease in brightness and attractiveness as the relative distance of the firefly increases. rij 

represents the relative distance between the firefly j and the firefly i. 

 Attraction Strength formula: 

βij(rij) = βie
−rij

2

 

β0 is the attraction of fireflies for light sources and also the greatest attraction. 

 Firefly moving position formula: 

x⃗ j(g + 1) =  x⃗ j(g) + βij(rij) (x⃗ i(g) − x⃗ j(g)) +  αε j 

 Where g is the number of iterations, x⃗ j(g) and x⃗ j(g) as the location of the firefly, α is 

the constant of the step factor on the [0,1], ε j which is a random number vector of uniform 

distribution, Gaussian Distribution or other distribution. 

 

Algorithm: Fire Fly Optimization 

Start 

 Define the objective function, f(x), x = (xi, … , xd)T 

 Generate the initial population of fireflies xi(i = 1,2, … , n) 

 Determine the light intensity li at xi from f(xi) 

 Determine the light absorption coefficient γ 

  While t < max generation 

   Make a copy of population for movement function 

  For i=1;n all n fireflies 

   For j = 1; i all n fireflies 

    If Ij > Ii 

    Move fireflies i and j in d- dimension; 

    End if    

    Attractiveness varies with distance r via exp[−γr] 

    Evaluate new solution and update light intensity 

   End 

  End 

  Rank the fireflies and find the current best 
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 End 

 Post process results and visualization 

End 

 

5. PROPOSED FIRE FLY BASED NEURAL NETWORK CLASSIFICATION 

The simple Back Propagation Neural Network (BPNN) has three layer that includes an input 

layer, a hidden layer, and an output layer. Its back-propagation functioning performs the 

training and testing steps. The input data in every layer are adjusted by interconnection weight 

between the layers (wij), which demonstrates the relation of the ith node of the current layer 

to the jth node of the next layer. The key role of the hidden layer is to process the input layer 

information. The sum of total activation is assessed by a sigmoid transfer function. In this 

proposed FFNN classification method, the weights of the BPNN are optimized with FF 

algorithm.  

 
 

Figure 1: Flowchart of the Proposed Fire Fly based Neural Network Classification 

Method 

 

Algorithm 2: Proposed FFNN Classification Method 

Allocate all the inputs and on output 

Initialize weights between -1 and 1. 

Repeat 

 For every input in the training set 

  For each layer in the network 

   For each node in the layer. 

    Determine the objective Function by FF. 

    Generate the initial population of fireflies xi(i = 1,2, … , n) 

    Determine the light intensity li at xi from f(xi) 
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    Determine the light absorption coefficient γ 

    Calculate the summation of the inputs weight + threshold  

    Calculate the activation function. 

   End 

  End 

 For every the output node 

  Calculate the error function. 

 End 

 For all hidden layer 

  For every node in the layer 

   Calculate the Error function. 

Update the weights in the network with using Firefly moving position 

formula. 

Evaluate the new solution and update light intensity. 

  End 

 End 

 Calculate the Error Function 

 End 

While ((iteration < maximum iterations) & (Error Function is > Criteria)) 

 

6. RESULT AND DISCUSSION 

 

6.1 Description of the Dataset 

The software defect dataset (jm1) is considered from the Kaggle Repository [24]. The 

following features are in the software defect dataset is given in the table 1. 

 

Table 1: Dataset Description of the Software Defect Prediction 

Sl.No Feature Name Feature Description 

1 Loc numeric % McCabe's line count of code 

2 v(g) numeric % McCabe "cyclomatic complexity" 

3 ev(g) numeric % McCabe "essential complexity" 

4 iv(g) numeric % McCabe "design complexity" 

5 n numeric % Halstead total operators + operands 

6 v numeric % Halstead "volume" 

7 l numeric % Halstead "program length" 

8 d Numeric % Halstead "difficulty" 

9 i numeric % Halstead "intelligence" 

10 e numeric % Halstead "effort" 

11 b numeric % Halstead 

12 t numeric % Halstead's time estimator 

13 lO Code numeric % Halstead's line count 

14 lO Comment numeric % Halstead's count of lines of comments 

15 lO Blank numeric % Halstead's count of blank lines 
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16 lO Code And 

Comment 

Numeric 

17 uniq_Op numeric % unique operators 

18 uniq_Opnd numeric % unique operands 

19 total_Op numeric % total operators 

20 total_Opnd numeric % of the flow graph 

21 defects False: The module has no defects 

True: The module has one or more defects 

 

6.2 Performance Metrics 

Table 2 depicts the performance metrics used in this research paper to evaluate the proposed 

EOBFS method. 

 

Table 2: Performance Metrics used in this research paper 

Metrics Equation 

Accuracy TP + TN

TP + TN + FP + FN
 

Sensitivity TP

TP + FN
 

False Positive Rate (FPR) FP

TN + FP
 

Precision TP

TP + FP
 

Specificity 1- False Positive Rate (FPR) 

Miss Rate 1-Sensitivity 

False Discovery Rate 1- Precision 

 

6.3 Performance Analysis of the Proposed FFNN classification Method 

The performance of the proposed FFNN classification method is evaluated with existing other 

classifiers like Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes 

(NB) with the original dataset and other feature selection methods like Proposed Enhanced 

Optimization based Feature Selection (EOBFS), Chi-Square (CS), Seagull Optimization 

Algorithm (SOA), Information Gain (IG), and Particle Swarm Optimization (PSO) processed 

datasets.  

 Table 3 depicts the Classification Accuracy (in %) obtained by the Proposed FFNN, 

SVM, KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature 

selection methods processed datasets. From the table 3, it is shown that the proposed FFNN 

classification with proposed EOBFS method gives better accuracy than the other classifiers 

using feature selection methods. 

 

Table 3: Classification Accuracy (in %) obtained by Proposed FFNN, SVM, KNN and 

NB classification method using original dataset, Feature Selection processed datasets 
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Feature Selection Methods Classification Accuracy (in %) by Classification 

Techniques 

Proposed FNN SVM KNN NB 

Original dataset 58.74 54.47 46.72 44.44 

Proposed EOBFS Method 96.85 92.86 83.38 79.74 

CS 79.26 74.94 64.92 59.53 

SOA 80.41 75.78 72.95 69.13 

IG 68.32 65.65 62.84 58.63 

PSO 66.55 63.79 59.74 56.64 

 

 Table 4 depicts the Sensitivity (in %) obtained by the Proposed FFNN, SVM, KNN and 

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods 

processed datasets. From the table 4, it is shown that the proposed FFNN classification with 

proposed EOBFS method gives increased Sensitivity than the other classifiers using feature 

selection methods. 

 

Table 4: Sensitivity (in %) obtained by Proposed FFNN, SVM, KNN and NB classification 

method using original dataset, Feature Selection processed datasets 

Feature Selection Methods Sensitivity (in %) by Classification Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 59.63 55.58 46.63 43.33 

Proposed EOBFS Method 96.47 93.68 81.49 78.81 

CS 77.24 73.92 69.84 67.24 

SOA 79.68 75.87 65.83 60.64 

IG 67.14 62.97 61.95 59.72 

PSO 65.22 59.86 58.65 55.42 

 

 Table 5 depicts the False Positive Rate (in %) obtained by the Proposed FFNN, SVM, 

KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature 

selection methods processed datasets. From the table 5, it is shown that the proposed FFNN 

classification with proposed EOBFS method gives reduced FPR than the other classifiers using 

feature selection methods. 

 

Table 5: False Positive Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB 

classification method using original dataset, Feature Selection processed datasets 

Feature Selection Methods False Positive Rate (in %) by Classification 

Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 48.14 52.72 56.29 58.78 

Proposed EOBFS Method 4.52 9.83 12.32 15.63 

CS 14.39 20.53 29.29 31.56 
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SOA 18.96 26.62 30.71 33.38 

IG 31.41 37.92 43.62 46.93 

PSO 36.74 40.51 45.44 47.82 

 

 Table 6 depicts the Precision (in %) obtained by the Proposed FFNN, SVM, KNN and 

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods 

processed datasets. From the table 6, it is shown that the proposed FFNN classification with 

proposed EOBFS method gives increased Precision than the other classifiers using feature 

selection methods. 

 

Table 6: Precision (in %) obtained by Proposed FFNN, SVM, KNN and NB classification 

method using original dataset, Feature Selection processed datasets 

Feature Selection Methods Precision (in %) by Classification Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 63.74 57.92 54.81 51.85 

Proposed EOBFS Method 95.41 91.43 82.62 78.79 

CS 80.28 75.36 72.29 69.83 

SOA 81.27 75.63 70.71 66.92 

IG 69.35 64.92 61.83 59.88 

PSO 65.42 61.31 59.62 56.74 

 

 Table 7 depicts the Specificity (in %) obtained by the Proposed FFNN, SVM, KNN and 

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods 

processed datasets. From the table 7, it is shown that the proposed FFNN classification with 

proposed EOBFS method gives increased Specificity than the other classifiers using feature 

selection methods. 

 

Table 7: Specificity (in %) obtained by Proposed FFNN, SVM, KNN and NB classification 

method using original dataset, Feature Selection processed datasets 

Feature Selection Methods Specificity (in %) by Classification Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 51.86 47.28 43.71 41.22 

Proposed EOBFS Method 95.48 90.17 87.68 84.37 

CS 85.61 79.47 70.71 68.44 

SOA 81.04 73.38 69.29 66.62 

IG 68.59 62.08 56.38 53.07 

PSO 63.26 59.49 54.56 52.18 

 

 Table 8 depicts the Miss Rate (in %) obtained by the Proposed FFNN, SVM, KNN and 

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods 

processed datasets. From the table 8, it is shown that the proposed FFNN classification with 
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proposed EOBFS method gives reduced miss rate than the other classifiers using feature 

selection methods. 

 

Table 8: Miss Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB classification 

method using original dataset, Feature Selection processed datasets 

Feature Selection Methods Miss Rate (in %) by Classification Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 40.37 44.42 53.37 56.67 

Proposed EOBFS Method 3.53 6.32 18.51 21.19 

CS 22.76 26.08 30.16 32.76 

SOA 20.32 24.13 34.17 39.36 

IG 32.86 37.03 38.05 40.28 

PSO 34.78 40.14 41.35 44.58 

 

 Table 9 depicts the False Discovery Rate (in %) obtained by the Proposed FFNN, SVM, 

KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature 

selection methods processed datasets. From the table 9, it is shown that the proposed FFNN 

classification with proposed EOBFS method gives reduced FDR than the other classifiers using 

feature selection methods. 

 

Table 9: False Discovery Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB 

classification method using original dataset, Feature Selection processed datasets 

Feature Selection Methods False Discovery Rate (in %) by Classification 

Techniques 

Proposed FFNN SVM KNN NB 

Original dataset 36.26 42.08 45.19 48.15 

Proposed EOBFS Method 4.59 8.57 17.38 21.21 

CS 19.72 24.64 27.71 30.17 

SOA 18.73 24.37 29.29 33.08 

IG 30.65 35.08 38.17 40.12 

PSO 34.58 38.69 40.38 43.26 

 

7. CONCLUSION 

One of the most important components of software is its quality. Software designs are 

becoming more sophisticated as demand grows, increasing the likelihood of software failures. 

Testers correct bugs in software to increase its quality. As a result, defect analysis increases 

software quality dramatically. The increased complexity of software also means a higher 

number of flaws, making manual detection a time-consuming operation. In this paper, 

enhancement of the Back Propagation Neural Network is done using FireFly Optimization 

(FFO) algorithm.  The weights and threshold of the BPNN is optimized using FF algorithm. 

From the results obtained for the Proposed FFNN based classification method for the 

classification and prediction of software defect, the proposed FFNN based classification 
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performs better in terms of Accuracy, Sensitivity, Specificity, Precision and it also reduced the 

error rates like FPR, Miss rate and FDR with feature selection processed datasets than other 

classifiers like SVM, KNN and NB .                                                                                                                                                                                                                                                                                                                                                                                                                                                                
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