
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5098 http://www.webology.org

Optimization Based Neural Network Classifiction Method For

Software Defect Prediction

M. Subhashini1 , A.Misbahulhuda2

1Assistant Professor in Department of Computer Science, Srimad Andavan Arts and Science

College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu,

India.

2Research Scholar in Department of Computer Science, Srimad Andavan Arts and Science

College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu,

India.

ABSTRACT

The software industry strives to enhance software quality by predicting bugs, removing bugs,

and predicting fault-prone modules. Researchers have been drawn to this field because of its

importance in the software industry. For software defect prediction, various strategies have

been presented. Data mining using machine learning has been advocated as an important

paradigm for software bug prediction in recent studies. The current level of software defect

prediction has a number of flaws, including classification accuracy. Software defect databases,

on the other hand, are unbalanced and known to be prone to errors due to their large size. This

research offered a combined approach for software defect prediction and software bug

prediction to address this issue. The suggested method combines Neural Networks with the

FireFly Optimization technique. The FFO method optimises the weights of the Back

Propagation Neural Network. The ideal minimises the BPNN classification error. The proposed

FF-NN classification method is compared to existing classifiers such as Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), and Nave Bayes (NB) using a variety of

evaluation metrics such as Accuracy, Sensitivity, Specificity, Precision, and error rates such as

Miss Rate, False Positive Rate, and False Discovery Rate.

KEYWORDS: Software Defect, Classification, Prediction, Neural Network, Fire Fly

Optimization.

1. INTRODUCTION

The need for software for diverse purposes has risen dramatically during the last two decades

[1] [2]. To suit client demand, a large number of software applications for corporate or daily

use are developed. Software quality is an unsolved issue as a result of mass production,

resulting in inadequate performance for industrial and individual applications. To address this

issue, software testing was developed, which aids in the discovery of faults or bugs in software

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5099 http://www.webology.org

applications and attempts to repair them [3] [4]. A great number of software applications are

generated each year due to increased demand from current technology-based industries and

business applications, yet software quality remains an ignored concern during this

development. Software applications have become an indispensable component of daily life and

business in recent years. A tiny software error in a corporate setting might result in a loss to

the industry and impair customer satisfaction [5] [6]. Software testing-related concerns have

become a major source of worry. As a result, an automated software testing procedure is

necessary, which can increase performance and reduce installation costs. This problem can be

avoided if the tester understands the reasons of potential faults and the overall software

development process. This can help with not only lowering overall software development costs,

but also better planning and execution of software development projects [7][8].

 A defect or bug is defined by IEEE standards as a "inappropriate step, procedure, or

data definition in a computer programme" [9]. In this article, the terms "software defects" and

"bugs" are used interchangeably to refer to errors in software source code [10]. Users may

experience undesirable system behaviour at any time as a result of system failure caused by

defects or faults.

 The software development life cycle is regarded as a fundamental contributor to

software development in the software industry. Early defect prediction is becoming

increasingly popular, and project managers are considering it a crucial demanding

responsibility [11]. Complex issue domains, rising software application requirements, software

performance uncertainty, and a complex development process are all recent developments in

the software development sector. Despite comprehensive documentation and a well-organized

procedure, some faults are unavoidable in the software development process, resulting in

software performance decrease.

 Various strategies for software defect minimization have been introduced in today's

industry development. However, for proper software application analysis, these methodologies

necessitate additional time, money, and resources. These efforts, on the other hand, can aid in

the analysis of fault sources and the improvement of software performance. Software reliability

is another term for software performance. According to software reliability, software

applications are tested in an unpredictable environment and assessed to see if they are capable

of operating in the environment for a specific period of time [12]. This method is based on

software reliability probability estimation [13]. Software metrics are employed to complete this

task, and it is discovered that a higher number of failure predictions necessitates more quality

improvement resources, making it a difficult process. Several software defect prediction

models based on software metrics have been proposed in recent decades. These models can aid

in the early detection of problems and the development of trustworthy software.

Most defect prediction models created to date have used software metrics such as classical

software metrics, object-oriented software metrics, and process metrics [14] [15].

Organizations utilise Pareto analysis for software quality measurement in real-time scenarios,

where software metrics are combined with the greatest metric value for a specific software

application. Although this technique improves performance, it is still unable to capture many

errors, resulting in software testing performance decrease. According to the study, human

review is ineffective at detecting faults in software modules. In a different scenario for software

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5100 http://www.webology.org

defect prediction, software measurements are used to create a statistical model for forecasting

software problems. The regression or function-approximation problem analysis [16] is used to

create these models. However, these methods do not produce effective results. This is due to

the fact that each software's design is unique, with various function combinations, development

teams, and third-party components. As a result, the software defect prediction produces an

incorrect result. Furthermore, because of the variety of terms, no "critical value" for any of the

software metrics can be determined, and parametric models such as linear models, Poisson

regression, and quadratic models, among others, cannot be accepted for defect prediction and

software analysis.

 To address the complexity issue, non-parametric techniques are presented for software-

defect prediction. These techniques include Data Mining technique and computational

intelligence for predicting the software defects.

3. ARTIFICIAL NEURAL NETWORK CLASSIFICATION

Artificial Neural Network (ANN) [17] [18] [19] [20] [21] [22] is a mathematical model that

simulates neuron action in the human brain computationally by duplicating the brain's pattern

and producing outputs depending on the learning of a set of training data. One of the most

common neural network topologies is a multi-layer feedforward network with a back-

propagation learning mechanism. It has been extensively researched and applied in a variety of

fields. A neural network is typically made up of three layers: an input layer, an output layer,

and an intermediate or hidden layer. The input vector is ∈ Rn and D = (X1, X2, . . , Xn)
T; the

output of q neurons in the hidden layer are Z = (Z1, Z2, . . , Zn)
T; and the outputs of the output

layer are Y ∈ Rn, Y = (Y1, Y2, . . , Yn)
T . Assuming that the weight and the threshold between

the input layer and the hidden layer are wij and yj, respectively, that the weight and the

threshold between the hidden layer and output layer are wjk and yk respectively, the outputs of

each neuron in a hidden layer and output layer are:

Zj = f (∑wijXi − θj

n

i=1

)

Yj = f (∑wkjZj − θk

q

j=1

)

 where f() is a transfer function, which is the rule for transferring the neurons' summed

input to their output, and is a way of adding non-linearity into the network design through a

proper choice. The sigmoid function, which is monotonic growing and ranges from 0 to 1, is

one of the most often utilised functions. A standard feed forward neural network with three (3)

inputs, one (1) hidden layer with seven (7) neurons, and one (1) output layer was utilised to

validate the performance of the proposed model.

4. FIREFLY OPTIMIZATION ALGORITHM

The firefly algorithm is a simulation of a firefly's natural activity in searching for mates and

determining the best position based on its luminous qualities [23]. The programme assumes

that firefly will be dispersed throughout space at random. Their brightness and appeal have a

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5101 http://www.webology.org

big influence on each other's attraction. The brightness of its own is determined by its position,

and the direction of movement is determined by the brightness of its own. High brightness

fireflies are constantly attracted to low luminance fireflies. Firefly will move randomly if the

brightness is the same. Because the better the position, the higher the brightness. The firefly

executes position iteration in the movement iteratively until it finds the ideal place, or the best

solution to the function. The following formula explains the mathematical explanation of the

optimization of the firefly algorithm:

 The relative luminance formula of the firefly is:

Iij(rij) = Iie
−γrij

2

 Where Iij represents the relative brightness between the firefly j and the firefly i; Ii

represents the absolute brightness of the firefly i at r=0; r is light absorption coefficient, the

algorithm believes that the light is weakened during the propagation process, resulting in a

decrease in brightness and attractiveness as the relative distance of the firefly increases. rij

represents the relative distance between the firefly j and the firefly i.

 Attraction Strength formula:

βij(rij) = βie
−rij

2

β0 is the attraction of fireflies for light sources and also the greatest attraction.

 Firefly moving position formula:

x⃗ j(g + 1) = x⃗ j(g) + βij(rij) (x⃗ i(g) − x⃗ j(g)) + αε j

 Where g is the number of iterations, x⃗ j(g) and x⃗ j(g) as the location of the firefly, α is

the constant of the step factor on the [0,1], ε j which is a random number vector of uniform

distribution, Gaussian Distribution or other distribution.

Algorithm: Fire Fly Optimization

Start

 Define the objective function, f(x), x = (xi, … , xd)T

 Generate the initial population of fireflies xi(i = 1,2, … , n)

 Determine the light intensity li at xi from f(xi)

 Determine the light absorption coefficient γ

 While t < max generation

 Make a copy of population for movement function

 For i=1;n all n fireflies

 For j = 1; i all n fireflies

 If Ij > Ii

 Move fireflies i and j in d- dimension;

 End if

 Attractiveness varies with distance r via exp[−γr]

 Evaluate new solution and update light intensity

 End

 End

 Rank the fireflies and find the current best

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5102 http://www.webology.org

 End

 Post process results and visualization

End

5. PROPOSED FIRE FLY BASED NEURAL NETWORK CLASSIFICATION

The simple Back Propagation Neural Network (BPNN) has three layer that includes an input

layer, a hidden layer, and an output layer. Its back-propagation functioning performs the

training and testing steps. The input data in every layer are adjusted by interconnection weight

between the layers (wij), which demonstrates the relation of the ith node of the current layer

to the jth node of the next layer. The key role of the hidden layer is to process the input layer

information. The sum of total activation is assessed by a sigmoid transfer function. In this

proposed FFNN classification method, the weights of the BPNN are optimized with FF

algorithm.

Figure 1: Flowchart of the Proposed Fire Fly based Neural Network Classification

Method

Algorithm 2: Proposed FFNN Classification Method

Allocate all the inputs and on output

Initialize weights between -1 and 1.

Repeat

 For every input in the training set

 For each layer in the network

 For each node in the layer.

 Determine the objective Function by FF.

 Generate the initial population of fireflies xi(i = 1,2, … , n)

 Determine the light intensity li at xi from f(xi)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5103 http://www.webology.org

 Determine the light absorption coefficient γ

 Calculate the summation of the inputs weight + threshold

 Calculate the activation function.

 End

 End

 For every the output node

 Calculate the error function.

 End

 For all hidden layer

 For every node in the layer

 Calculate the Error function.

Update the weights in the network with using Firefly moving position

formula.

Evaluate the new solution and update light intensity.

 End

 End

 Calculate the Error Function

 End

While ((iteration < maximum iterations) & (Error Function is > Criteria))

6. RESULT AND DISCUSSION

6.1 Description of the Dataset

The software defect dataset (jm1) is considered from the Kaggle Repository [24]. The

following features are in the software defect dataset is given in the table 1.

Table 1: Dataset Description of the Software Defect Prediction

Sl.No Feature Name Feature Description

1 Loc numeric % McCabe's line count of code

2 v(g) numeric % McCabe "cyclomatic complexity"

3 ev(g) numeric % McCabe "essential complexity"

4 iv(g) numeric % McCabe "design complexity"

5 n numeric % Halstead total operators + operands

6 v numeric % Halstead "volume"

7 l numeric % Halstead "program length"

8 d Numeric % Halstead "difficulty"

9 i numeric % Halstead "intelligence"

10 e numeric % Halstead "effort"

11 b numeric % Halstead

12 t numeric % Halstead's time estimator

13 lO Code numeric % Halstead's line count

14 lO Comment numeric % Halstead's count of lines of comments

15 lO Blank numeric % Halstead's count of blank lines

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5104 http://www.webology.org

16 lO Code And

Comment

Numeric

17 uniq_Op numeric % unique operators

18 uniq_Opnd numeric % unique operands

19 total_Op numeric % total operators

20 total_Opnd numeric % of the flow graph

21 defects False: The module has no defects

True: The module has one or more defects

6.2 Performance Metrics

Table 2 depicts the performance metrics used in this research paper to evaluate the proposed

EOBFS method.

Table 2: Performance Metrics used in this research paper

Metrics Equation

Accuracy TP + TN

TP + TN + FP + FN

Sensitivity TP

TP + FN

False Positive Rate (FPR) FP

TN + FP

Precision TP

TP + FP

Specificity 1- False Positive Rate (FPR)

Miss Rate 1-Sensitivity

False Discovery Rate 1- Precision

6.3 Performance Analysis of the Proposed FFNN classification Method

The performance of the proposed FFNN classification method is evaluated with existing other

classifiers like Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes

(NB) with the original dataset and other feature selection methods like Proposed Enhanced

Optimization based Feature Selection (EOBFS), Chi-Square (CS), Seagull Optimization

Algorithm (SOA), Information Gain (IG), and Particle Swarm Optimization (PSO) processed

datasets.

 Table 3 depicts the Classification Accuracy (in %) obtained by the Proposed FFNN,

SVM, KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature

selection methods processed datasets. From the table 3, it is shown that the proposed FFNN

classification with proposed EOBFS method gives better accuracy than the other classifiers

using feature selection methods.

Table 3: Classification Accuracy (in %) obtained by Proposed FFNN, SVM, KNN and

NB classification method using original dataset, Feature Selection processed datasets

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5105 http://www.webology.org

Feature Selection Methods Classification Accuracy (in %) by Classification

Techniques

Proposed FNN SVM KNN NB

Original dataset 58.74 54.47 46.72 44.44

Proposed EOBFS Method 96.85 92.86 83.38 79.74

CS 79.26 74.94 64.92 59.53

SOA 80.41 75.78 72.95 69.13

IG 68.32 65.65 62.84 58.63

PSO 66.55 63.79 59.74 56.64

 Table 4 depicts the Sensitivity (in %) obtained by the Proposed FFNN, SVM, KNN and

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods

processed datasets. From the table 4, it is shown that the proposed FFNN classification with

proposed EOBFS method gives increased Sensitivity than the other classifiers using feature

selection methods.

Table 4: Sensitivity (in %) obtained by Proposed FFNN, SVM, KNN and NB classification

method using original dataset, Feature Selection processed datasets

Feature Selection Methods Sensitivity (in %) by Classification Techniques

Proposed FFNN SVM KNN NB

Original dataset 59.63 55.58 46.63 43.33

Proposed EOBFS Method 96.47 93.68 81.49 78.81

CS 77.24 73.92 69.84 67.24

SOA 79.68 75.87 65.83 60.64

IG 67.14 62.97 61.95 59.72

PSO 65.22 59.86 58.65 55.42

 Table 5 depicts the False Positive Rate (in %) obtained by the Proposed FFNN, SVM,

KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature

selection methods processed datasets. From the table 5, it is shown that the proposed FFNN

classification with proposed EOBFS method gives reduced FPR than the other classifiers using

feature selection methods.

Table 5: False Positive Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB

classification method using original dataset, Feature Selection processed datasets

Feature Selection Methods False Positive Rate (in %) by Classification

Techniques

Proposed FFNN SVM KNN NB

Original dataset 48.14 52.72 56.29 58.78

Proposed EOBFS Method 4.52 9.83 12.32 15.63

CS 14.39 20.53 29.29 31.56

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5106 http://www.webology.org

SOA 18.96 26.62 30.71 33.38

IG 31.41 37.92 43.62 46.93

PSO 36.74 40.51 45.44 47.82

 Table 6 depicts the Precision (in %) obtained by the Proposed FFNN, SVM, KNN and

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods

processed datasets. From the table 6, it is shown that the proposed FFNN classification with

proposed EOBFS method gives increased Precision than the other classifiers using feature

selection methods.

Table 6: Precision (in %) obtained by Proposed FFNN, SVM, KNN and NB classification

method using original dataset, Feature Selection processed datasets

Feature Selection Methods Precision (in %) by Classification Techniques

Proposed FFNN SVM KNN NB

Original dataset 63.74 57.92 54.81 51.85

Proposed EOBFS Method 95.41 91.43 82.62 78.79

CS 80.28 75.36 72.29 69.83

SOA 81.27 75.63 70.71 66.92

IG 69.35 64.92 61.83 59.88

PSO 65.42 61.31 59.62 56.74

 Table 7 depicts the Specificity (in %) obtained by the Proposed FFNN, SVM, KNN and

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods

processed datasets. From the table 7, it is shown that the proposed FFNN classification with

proposed EOBFS method gives increased Specificity than the other classifiers using feature

selection methods.

Table 7: Specificity (in %) obtained by Proposed FFNN, SVM, KNN and NB classification

method using original dataset, Feature Selection processed datasets

Feature Selection Methods Specificity (in %) by Classification Techniques

Proposed FFNN SVM KNN NB

Original dataset 51.86 47.28 43.71 41.22

Proposed EOBFS Method 95.48 90.17 87.68 84.37

CS 85.61 79.47 70.71 68.44

SOA 81.04 73.38 69.29 66.62

IG 68.59 62.08 56.38 53.07

PSO 63.26 59.49 54.56 52.18

 Table 8 depicts the Miss Rate (in %) obtained by the Proposed FFNN, SVM, KNN and

NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature selection methods

processed datasets. From the table 8, it is shown that the proposed FFNN classification with

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5107 http://www.webology.org

proposed EOBFS method gives reduced miss rate than the other classifiers using feature

selection methods.

Table 8: Miss Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB classification

method using original dataset, Feature Selection processed datasets

Feature Selection Methods Miss Rate (in %) by Classification Techniques

Proposed FFNN SVM KNN NB

Original dataset 40.37 44.42 53.37 56.67

Proposed EOBFS Method 3.53 6.32 18.51 21.19

CS 22.76 26.08 30.16 32.76

SOA 20.32 24.13 34.17 39.36

IG 32.86 37.03 38.05 40.28

PSO 34.78 40.14 41.35 44.58

 Table 9 depicts the False Discovery Rate (in %) obtained by the Proposed FFNN, SVM,

KNN and NB using Original Dataset, Proposed EOBFS, CS, SOA, IG and PSO feature

selection methods processed datasets. From the table 9, it is shown that the proposed FFNN

classification with proposed EOBFS method gives reduced FDR than the other classifiers using

feature selection methods.

Table 9: False Discovery Rate (in %) obtained by Proposed FFNN, SVM, KNN and NB

classification method using original dataset, Feature Selection processed datasets

Feature Selection Methods False Discovery Rate (in %) by Classification

Techniques

Proposed FFNN SVM KNN NB

Original dataset 36.26 42.08 45.19 48.15

Proposed EOBFS Method 4.59 8.57 17.38 21.21

CS 19.72 24.64 27.71 30.17

SOA 18.73 24.37 29.29 33.08

IG 30.65 35.08 38.17 40.12

PSO 34.58 38.69 40.38 43.26

7. CONCLUSION

One of the most important components of software is its quality. Software designs are

becoming more sophisticated as demand grows, increasing the likelihood of software failures.

Testers correct bugs in software to increase its quality. As a result, defect analysis increases

software quality dramatically. The increased complexity of software also means a higher

number of flaws, making manual detection a time-consuming operation. In this paper,

enhancement of the Back Propagation Neural Network is done using FireFly Optimization

(FFO) algorithm. The weights and threshold of the BPNN is optimized using FF algorithm.

From the results obtained for the Proposed FFNN based classification method for the

classification and prediction of software defect, the proposed FFNN based classification

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5108 http://www.webology.org

performs better in terms of Accuracy, Sensitivity, Specificity, Precision and it also reduced the

error rates like FPR, Miss rate and FDR with feature selection processed datasets than other

classifiers like SVM, KNN and NB .

REFERENCES

[1] Li, Zhiqiang, Xiao-Yuan Jing, and Xiaoke Zhu. "Progress on approaches to software

defect prediction." Iet Software 12.3 (2018): 161-175.

[2] Rathore, Santosh S., and Sandeep Kumar. "A study on software fault prediction

techniques." Artificial Intelligence Review 51.2 (2019): 255-327.

[3] Akmel, Feidu, Ermiyas Birihanu, and Bahir Siraj. "A literature review study of software

defect prediction using machine learning techniques." Int. J. Emerg. Res. Manag.

Technol 6.6 (2017): 300-306.

[4] Singh, Praman Deep, and Anuradha Chug. "Software defect prediction analysis using

machine learning algorithms." 2017 7th International Conference on Cloud Computing,

Data Science & Engineering-Confluence. IEEE, 2017.

[5] Malhotra, Ruchika. "A systematic review of machine learning techniques for software

fault prediction." Applied Soft Computing 27 (2015): 504-518.

[6] Catal, Cagatay. "Software fault prediction: A literature review and current

trends." Expert systems with applications 38.4 (2011): 4626-4636.

[7] Catal, Cagatay, and Banu Diri. "A systematic review of software fault prediction

studies." Expert systems with applications 36.4 (2009): 7346-7354.

[8] Vandecruys, Olivier, et al. "Mining software repositories for comprehensible software

fault prediction models." Journal of Systems and software 81.5 (2008): 823-839.

[9] Prasad, M. C., Lilly Florence, and Arti Arya. "A study on software metrics based

software defect prediction using data mining and machine learning

techniques." International Journal of Database Theory and Application 8.3 (2015): 179-

190.

[10] Chen, Yuan, et al. "Research on software defect prediction based on data mining." 2010

The 2nd International Conference on Computer and Automation Engineering (ICCAE).

Vol. 1. IEEE, 2010.

[11] Malhotra, Ruchika. "A systematic review of machine learning techniques for software

fault prediction." Applied Soft Computing 27 (2015): 504-518.

[12] Singh, Pradeep, and Shrish Verma. "An efficient software fault prediction model using

cluster-based classification." Int. J. Appl. Inf. Syst 7.3 (2014): 35-41.

[13] Punitha, K., and S. Chitra. "Software defect prediction using software metrics-A

survey." 2013 International Conference on Information Communication and Embedded

Systems (ICICES). IEEE, 2013.

[14] Azeem, Naheed, and Shazia Usmani. "Analysis of data mining based software defect

prediction techniques." Global Journal of Computer Science and Technology (2011).

[15] Jacob, Shomona Gracia, and Geetha Raju. "Software defect prediction in large space

systems through hybrid feature selection and classification." Int. Arab J. Inf.

Technol. 14.2 (2017): 208-214.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

5109 http://www.webology.org

[16] Thota, Mahesh Kumar, Francis H. Shajin, and P. Rajesh. "Survey on software defect

prediction techniques." International Journal of Applied Science and Engineering 17.4

(2020): 331-344.

[17] Subhashini, M., & Gopinath, R., Employee Attrition Prediction in Industry using

 Machine Learning Techniques, International Journal of Advanced Research in

 Engineering and Technology, 11(12), 3329-3341 (2020).

[18] Rethinavalli, S., & Gopinath, R., Classification Approach based Sybil Node

 Detection in Mobile Ad Hoc Networks, International Journal of Advanced

 Research in Engineering and Technology, 11(12), 3348-3356 (2020).

[19] Poornappriya, T.S., & Gopinath, R., Application of Machine Learning Techniques for

Improving Learning Disabilities, International Journal of Electrical Engineering and

Technology (IJEET), 11(10), 403-411(2020).

[20] Poornappriya, T.S., & Gopinath, R., Employee Attrition in Human Resource Using

Machine Learning Techniques, Webology, 18(6), 2844-2856 (2021).

[21] Priyadharshini, D., Gopinath, R., Poornappriya, T.S., A fuzzy MCDM approach for

measuring the business impact of employee selection, International Journal of

Management, 11(7), .1769-1775 (2020).

[22] Poornappriya, T.S., & Gopinath, R., Plant Disease Identification using Artificial

Intelligence Approaches, International Journal of Electrical Engineering and

Technology (IJEET), 11(10), 392-402 (2020).

[23] Kaveh, A., R. Mahdipour Moghanni, and S. M. Javadi. "Optimum design of large steel

skeletal structures using chaotic firefly optimization algorithm based on the Gaussian

map." Structural and Multidisciplinary Optimization 60.3 (2019): 879-894.

[24] https://www.kaggle.com/datasets/semustafacevik/software-defect-

prediction?resource=download&select=jm1.csv

https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction?resource=download&select=jm1.csv
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction?resource=download&select=jm1.csv

